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This paper  concerns  a square lattice, Is ing-type model  with interact ions 
between the four  spins at the corners  o f  each face. These may  include 
nearest and next-nearest-neighbor interactions, and interactions with a 
magnetic field. Provided the Hamiltonian is symmetric with respect to 
both row reversal and column reversal, a rapidly convergent sequence of 
variational approximations is obtained, giving the free energy and other 
thermodynamic properties. For the usual Ising model, the lowest such 
approximations are those of Bethe and of Kramers and Wannier. The 
method provides a new definition of corner transfer matrices. 

KEY WORDS: Statistical mechanics; lattice statistics; Ising models; 
variational approximation ; corner transfer matrices. 

1. INTRODUCTION A N D  DEFINITION OF THE MODEL 

In previous papers (1,2) variational approximations have been obtained for 
the free energy of two square lattice models in statistical mechanics; namely 
the monomer-d imer  system and the zero-field Potts model. Here this method 
is applied to a fairly general square-lattice Ising model, including one-, two-, 
three-, and four-spin interactions. (Possible further generalizations are 
discussed in the summary.) 

The method is interesting for two reasons. First, it provides a rapidly 
convergent sequence of approximations which can be thought of  as im- 
provements on the Bethe approximation. These can be used to locate phase 
transitions and critical points, and give very good numerical estimates of  the 
non-critical thermodynamic properties. (1-a~ Second, the method provides an 
alternative definition of the previously defined (~'5~ "corner transfer mat-  
rices" (CTMs). (For the solvable models, i.e., the zero-field Ising and eight- 
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vertex models, these CTMs appear to have a very simple eigenvalue 
spectrum in the thermodynamic limit.) 

The outline of the paper is as follows: the model is defined in this 
section, then the variational equations are obtained in Sections 2 and 3, the 
main result being (30). This equation defines certain matrices of dimension 
2 n by 2 ~, as well as the partition function per site K. Taking n = 0, 1, 2,... 
gives a hierarchy of variational approximations for K. In Section 4 it is 
shown that the two lowest level approximations for the usual Ising model 
are the Bethe and Kramers-Wannier approximations. 

In Section 5 the equations are given a graphical interpretation, which 
makes it obvious that for large n the matrices in (30) are the half-column, 
half-row, and corner transfer matrices of the square lattice. 

The model considered here is defined as follows. To each site i of  a 
square lattice assign a spin as, with values + 1 or - 1  (+  or - ) .  To each 
square face assign an energy E(a,, aj, ~ k, az), where i, .L k, I are the sites 
around the square, ordered as in Fig. 1, and 

- E ( a , b , c , d )  = Jo + �88 + b + e + d) 

+ �89 + ed) + �89 + bd) 

+ J"(ad + be) + Ha(bed + eda + dab + abe) + J4abed (1) 

Thus H, J, J', J", Ha, and J4 are the coefficients of one-spin, horizontal 
two-spin, vertical two-spin, diagonal two-spin, three-spin, and four-spin 
interactions, respectively. The total energy is 

E = ~ e(a~, %, crk, az) (2) 

where the summation is over all square faces i, j ,  k, l of  the lattice. 
The partition function is 

z = E N  (3) 

where the product is over all faces of the lattice, the sum is over all values 
( +  or - )  of all the spins, and 

w(a, b, e, d) = exp[-e(a ,  b, c, d)/kBT], (4) 

k 

i 

i j 
Fig. 1. A typical face of the square lattice. 
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kB being Boltzmann's constant. The coefficients in (1) have been chosen so 
that 

w(a, b, c, d) -- w(c, d, a, b) (5) 

w(a, b, c, d) = w(b, a, d, c) (6) 

The property (5) ensures that the model is unchanged by reversing the order 
of  the rows, while (6) ensures that it is unchanged by reversing the columns. 

2. THE T R A N S F E R  M A T R I X  

Take the lattice to have m columns and m'  rows, and impose, cyclic 
(toroidal) boundary conditions. Let a = {a 1 ,..., am} be the spins on one row, 
and a '  -- {al', .... am'} the spins on the row above. The contribution to the 
partition function of the interactions between these rows is 

~ I  t fir Va.a, = W(aj, aj + 1, a j ,  j .  1) (7) 
Y=I 

! 
taking am+l = a l ,  am§ = al'- 

Let V be the 2 m by 2 m "transfer  matr ix"  with elements V~.~,. Then in 
the usual way one can show that, for m'  large, 

Z = Tr V m' ,,~ A m" (8) 

where A is the maximum eigenvalue of V. 
The conditions (5) ensure that V is symmetric, so A can be determined 

from the variational principle 

A = ~rV~/q,r~ (9) 

where ~ is a 2m-dimensional vector chosen to maximize the RHS of (9); 
~r  is its transpose. 

The object of statistical mechanics is to calculate the "par t i t ion function 
per site" 

K .-~ Z l lmm" ~ -  A TM (10) 

in the limit when m, m'  are infinitely large. 

3. V A R I A T I O N A L  A P P R O X I M A T I O N  

Let ~b(a) be the element a of  the vector ~b. Remembering that  a denotes 
the m spins al,..., am, this can be written more explicitly as ~b(al ..... %). For  
reasons that will be given in Section 5, I use the following "tr ial  funct ion" 
for ~b: 

q,(a 1,..., am) = Tr[F(al,  a2)F(a2, a3)F(a3, a~) ... F (%,  al)] (11) 
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where each of F ( + ,  +), F ( + ,  - ) ,  F ( - ,  +),  F ( - ,  - )  is a 2" by 2" matrix 
and n is some given number, e.g., 3. The matrices F ( + ,  +),..., F ( - ,  - )  must 
satisfy the symmetry conditions 

FT( + ,  + )  = F (+ ,  +),  F~'(+, - )  = F ( - ,  +),  FT( - ,  - )  = F ( - ,  - )  (12) 

(superscript T denoting matrix transposition). Otherwise they are arbitrary. 
The program now is to calculate the RHS of (9), using (11), in the limit 

of m large; then to choose the four matrices F ( + ,  +),..., F ( - ,  - )  to 
maximize the RHS, subject to the constraint (12). 

Calculat ion of  d~rq~ and ~rVd~ 

Let Fa.(a, b) be the element of F(a, b) in row A and column/z. From (11) 
it is readily found that 

~br~b = Tr R ~ (13) 

where R is a 2 2" + 1 by 2 2" + 1 matrix. The element of R in row (A, a, ~') and 
column (t~, b, t~') is 

R()t, a, A'llx, b, tz') = Fz,(a, b)Fa,u,(a, b) (14) 

When m is large it follows from (13) that 

~rr ~ ~m (15) 

where ~: is the maximum eigenvalue of R. Let X be the corresponding eigen- 
vector and write its element A, a, A' as X~a,(a). This can be regarded as the 
element A, A' of a 2" by 2" matrix X(a). Using (14) and (12), the eigenvalue 
equation for s ~ can then be written 

F(a, b)X(b)r(b, a) = ~X(a) (16) 
b 

w i t h a = +  o r - .  
The relations (12) imply that R is a symmetric matrix, so ~ can itself 

be determined from a variational principle, namely 

= ~ Tr[Xr(a)F(a, b)X(b)F(b, a ) ] / ~  Tr XT(a)X(a) (17) 
t~b 

Equations (16) ensure that (17) is stationary with respect to variations in the 
matrices X ( + ) a n d  X ( - ) .  

Now consider the term ~br V~b in (9). From (7) and (11), 

~brv~b = Tr S m (18) 
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where S is a 22"+2 by 22~+2 matrix. The element of S in row (h, a, a', h') and 
column (/,, b, b',/~') is 

S(;L a, a', k']/,, b, b',/~') = rau(a, b)w(a, b, a', b')F~,,,.(a', b') (19) 

The argument now closely parallels the derivation of (15)-(17). Let .1 
be the maximum eigenvalue of S, and Ythe corresponding eigenvector. Then 

CTVr ~ ,~m (20) 

when m is large. The element A, a, a', A' of Y can be written as Ya~,,(a, a') and 
regarded as the element h, h' of a 2 ~ by 2" matrix Y(a, a'). Using (19) and 
(12), the eigenvalue equation for .1 can then be written 

w(a, b, a', b')r(a, b) Y(b, b')F(b', a') = '1Y(a, a') (21) 
b,O" 

for a, a' = + ,  - .  
From (6), (12), and (19), S is a symmetric matrix, so 

.1 = ( ~, w(a, b, a', b') Tr[ Yr(a, a')F(a, b) 
\ a,b,a',O" 

x Y(b, b')f(b', a')] Tr Yr(a, a')Y(a, a') (22) 

the RHS being stationary with respect to variations in the matrices I1(+, +),  
r (+ , - ) ,  r ( - ,  +), r ( - , - ) .  

From (12), the eigenvalue equations (16) and (21) permit solutions 
satisfying the symmetry relations 

Xr(a) = X(a), Yr(a, a') = Y(a', a) (23) 

for a, a' = + ,  - .  It seems reasonable to suppose that the desired maximum 
eigenvalues s e, .1 will correspond to solutions satisfying these symmetry 
relations. This is assumed hereafter and is further justified in Section 5. 

From (10), (9), (15) and (20), when m is large 

= A TM = *1/s e (24) 

Thus in the thermodynamic limit the partition function per site is simply 

Maximizat ion of A 

It remains to choose the matrices F ( + ,  +),..., F ( - ,  - )  to maximize A, 
or equivalently K = .1/~:. This can be done by using Eqs. (17) and (22) for 
~:, ~7. The resulting expression for K involves the matrices X and Y, as well as 
F, but is by definition stationary with respect to variations in X and Y. 
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Thus when differentiating K with respect to F, the terms coming from the 
induced variations in X and Y do not contribute. This means that X and Y 
can be treated as constants in the differentiation. Using the symmetry con- 
straints (12) and the properties (23), this gives 

w(a, b, a', b') r(b, b')F(b', a') Y(a', a) = ~' X(b)F(b, a)X(a) (25) 
c*',b" 

for a, b = +,  - ; where 

'7' = ~ ~ Tr Y(a', a) Y(a, a ' ) / ~  Tr X2(a) (26) 

Equations (16), (21) and (25) define the matrices F(a, b), X(a), and 
Y(a, b) (to within normalization factors) and hence K = w/~:. 

A further equation can be deduced by premultiplying both sides of (25) 
by F(a, b) and summing over b. The LHS can then be simplified by using (21), 
and the RHS by using (16), giving 

~, Y(a, a') Y(a', a) = ~'XZ(a) (27) 
cff 

where ~' = f~'/~?. 

Row-Column Symmetry 

One rather unsatisfactory feature of the transfer matrix method is that it 
treats the rows of the lattice different than the columns, and so destroys the 
symmetry between them. It is therefore very gratifying to find that the 
symmetry is restored in Eqs. (16), (21), and (25). 

To see this, define six 2 n by 2 ~ matrices A(+),  A( - ) ,  G(+,  +),  G(+,  - ) ,  
G ( - ,  +),  and G ( - ,  - )  such that 

B(a) = AT(a) 

X(a) = B(a)A(a) 

(28a) 

(28b) 

Y(a, a') = B(a)G(a, a')A(a') (28c) 

(These equations do not define A, B, G uniquely, but f o r  a , a  r = + ,  - - .  

ultimately I shall specialize to a representation in which they are well- 
defined.) 

It appears that X(+)  and X ( - )  are always positive definite, so A(+),  
A ( - ) ,  B(+),  and B ( - )  are nonsingular and can be chosen to be real. 

The symmetry conditions (23) are now equivalent to 

Gr(a, a') = G(a', a) (29) 
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for a, a' = + ,  - .  Substituting the expressions (28) into (16), (27), (21), and 
(25), the equations become 

~.. F(a, b)B(b)A(b)F(b, a) = fB(a)A(a) (30a) 
b 

~, G(a, b)A(b)B(b)G(b, a) = ~'A(a)B(a) (30b) 
b 

E w(a, b, a', b')r(a, b)B(b)G(b, b')A(b')F(b', a') = ~B(a)G(a, a')A(a') (30c) 
b,b" 

w(a', a, b', b)G(a, b)A(b)r(b, b')B(b')G(b', a') = ~l'A(a)F(a, a')B(a') (30d) 
b,b" 

Equations (30) are the main result of this paper. Clearly they are sym- 
metric with respect to interchanging A, F, ~, ~ with B, G, ~:', ~', while simul- 
taneously replacing w(a, b, a', b') with w(a', a, b', b). However, this last is 
equivalent to rotating the lattice through 90 ~ i.e., to interchanging the rows 
with the columns. Thus this row-column symmetry is present in the 
equations. 

Var ia t iona l  Expression for  • 

From (17), (22), (28), and (29), the partition function per site K = 7//~ 
is 

K = rlr4/r2r3 (31a) 

where 

r 1 

r 2 =  

?'3 

?'4 

Tr A(a)B(a)A(a)B(a) (31 b) 

E Tr[A(a)F(a, b)B(b)A(b)F(b, a)B(a)] (31c) 
a,b 

Tr[B(a)G(a, b)A(b)B(b)G(b, a)A(a)] (31 d) 
apO 

w(a, b, a', b') Tr[B(a')G(a', a)A(a)F(a, b)B(b)G(b, b')A(b')F(b', a')] 

a.b,~',b' (31e) 

Equation (31a), together with (31b)-(31e), is a variational expression 
for ~, in that it is stationary with respect to variations in the matrices A(a), 
B(a), F(a, b), G(a, b). This can be useful in numerical calculations, since it 
implies that if the A, B, F, G are calculated to within a certain error E, and 
~c is then calculated from (31) [without using (30)], then the error in x should 
only be of order ~2. 
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Magnetization and Nearest-Neighbor Correlations 

The derivatives of K with respect to H, J, etc. can be obtained by differ- 
entiating (31). Since this expression is stationary with respect to the A, B, 
F, G, the induced variations in these matrices do not contribute. This means 
that the differentiations can be performed as if the A, B, F, G were constant. 
The magnetization M and nearest-neighbor horizontal correlation (ei~j) 
are thus readily found to be, after using (30) to simplify the resulting ex- 
pressions, 

M = (o~) = kBT0(ln K)/OH 

= r f  1 ~ a Tr  a(a)B(a)A(a)B(a) (32) 
t l  

{criej) = k~T e(ln K)/OJ 

?.-1 = 2 "~ ab Tr A(a)F(a, b)B(b)A(b)F(b, a)B(a) (33) 
a.,b 

Representation with A(  _+ ) Diagonal 

Equations (30)-(33), and the symmetry relations (12), (28a), and (29), 
are unchanged by the following transformations: 

A(a) -+ Q(a)A(a)P r(a), B(a) -+ P(a)B(a) Qr(a) 

F(a, b) --> P(a)F(a, b)P'r(b), G(a, b) ~ Q(a)G(a, b)Q~(b) (34) 

where P (+ ) ,  P ( - ) ,  Q(+) ,  and Q ( - )  are 2" by 2" orthogonal matrices. 
From (28a) these orthogonal matrices can be chosen to ensure that the 
A(a), B(a) are diagonal. 

Without loss of generality, the matrices A(a), B(a) can therefore be 
chosen to be diagonal. Equation (28a) then implies that 

B(a) = A(a), a = + or - (35) 

Choosing an appropriate normalization for the matrices F(a, b), and for 
the matrices G(a, b), one can also ensure that 

= ~:'= 1 (36) 

from which it follows that 

~7 = ~/' = K (37) 

The matrices F(a, b), G(a, b) are now completely determined by (30). 
The A(a) are determined to within a single normalization factor. A con- 
venient way to fix this is to require that the maximum diagonal element of 
A(+)  be unity. 
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I te ra t ive  M e t h o d  of  So lut ion  

Using the A-diagonal representation above, define new 2 ~ by 2 ~ matrices 
as follows: 

H(a, bit) = ~_, w(a, d, c, b)FT(d, a)A(d)G(d, b) (38) 
d 

Fl(a, b) = A(a)r(a, b)A- l(b) 

G~(a, b) = A(a)G(a, b)A- ~(b) (39) 

Now define two 2 ~ + ~ by 2" + 1 matrices U(+)  and U( - ) ,  and four 2" + ~ 
by 2 n matrices F~(+), F2(-) ,  G2(+), G2(-) :  

U(a) = (H(+ ,  +la) H ( + , - ] a ) ~  (40) 
\ H ( - ,  + [a) H ( - ,  [a)] 

F2(a) = \ F I ( - ,  a) ' G2(a) = \ G ~ ( - ,  a) 

f o r a  = + ,  - .  
Then Eqs. (30c) and (26d) can be written, using (5), 

U(a)F2(a) = KG2(a)A(a) (42a) 

UT(a)G2(a) = •F2(a)A(a) (42b) 

f o r a  = + ,  - 
Remember that A(+)  and A ( - )  are diagonal and consider a particular 

value of a and a particular column of the matrix equations (40). It is readily 
seen that each column of F2(a) [G2(a)] is an eigenvector of U~(a)U(a) 
[U(a)U~(a)], the eigenvalue being the corresponding element of ~2A2(a). 
Thus the columns are eigenvectors of a real, symmetric matrix and can be 
chosen orthogonal. If they are further chosen to be orthonormal, then 

F2~(a)F2(a) = GJ(a)G2(a) = I (43) 

where I is the unit 2 n by 2" matrix. 
However, remembering that ~: = ~ ' =  1 and the definitions (41) and 

(39), we see that (43) is precisely Eqs. (30a) and (30b). 
This suggests the following iterative procedure for solving the equations 

for a given value of n, given a reasonable initial guess at the solution: 

(a) Calculate U(+) and U ( - )  from (38) and (40). 
(b) Obtain the normalized eigenvectors and eigenvalues of U~'(a)U(a) 

and U(a) U~(a), a = +, - .  
(c) Set K 2 equal to the largest eigenvalue of U~(+)U(+) .  
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(d) For  each value of a there are 2 ~+1 eigenvalues. Select the 2" of these 
that are closest to the previous values of  the diagonal elements of  
K2A2(a). Now redefine A(a) so that the elements of ,c2A2(a) are these 
eigenvalues. 

(e) Using this selection and ordering of the eigenvalues, let F2(a) and 
G2(a) be the corresponding matrices of eigenvectors satisfying (42). 

(f) Calculate the F(a, b) and G(a, b) from (41) and (39). Return to (a). 

This procedure appears to converge fairly well, so long as the system is 
not near a critical point. Near  such points a full Newton-Raphson  iterative 
procedure may be necessary. 

One subtle point is that at any intermediate stage in the calculation the 
symmetry conditions (12) and (29) may be violated. Nevertheless, the 
procedure should converge to a symmetric solution, provided the definition 
(38) of  H(a, ble ) is used exactly as written. 

Given the solution for a particular value m of n, this procedure can also 
be used to obtain a reasonable guess at the solution for n = m + 1. One 
merely keeps all the eigenvalues and eigenvectors at stages (d) and (e), so 
that F2(a) and G2(a) are 2 m+l by 2 m+~ matrices. From (41), Fz(a, b) and 
Gz(a, b) are 2 m by 2 m+~ matrices. The matrices labeled A(d) and A(a) in 
(38) and (39) are 2 m by 2 m and are those of the old n = m solution, while 
those labeled A(b) are the new, expanded 2 m + 1 by 2 m + ~ matrices. The matrices 
H(a, blc ) can now be calculated from (38) and are of dimension 2 m+l by 
2 m + 1. One can now calculate the U(a) from (40) and proceed normally with 
n = m + l .  

In i t ia l  Guesses  

These comments still beg the question of how to obtain a " reasonable"  
initial guess at the solution for some small value of n, notably n = 0. For  
high temperatures the simplest sensible n = 0 guess is 

F(a, b) = G(a, b) = 2-112, A(a) = 1 

for a , b  = + , - .  
At low temperatures a sensible guess is one which gives an eigenvector 

~b in (11) corresponding to the ground state of  the system. 
For  instance, for a ferromagnetic system with H + 4//3 >/ 0, the 

ground state has all spins up and the corresponding n = 0 guess (which 
should work for all sufficiently low temperatures) is 

F(a, b) = G(a, b) = 3(a, +)3(b, + )  

A ( + )  = 1, A ( - )  = 0 (44) 

where 3(x, y) -- 1 if x = y, and otherwise is zero. 
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For a Hamiltonian dominated by antiferromagnetic nearest-neighbor 
two-spin interactions (i.e., J and J '  large and negative), the n = 0 solution 
corresponding to the ground state is, for a, b = +,  - ,  

F(a, b) = G(a, b) = ~(a, - b ) ,  A(a) = 1 (45) 

In fact this is an exact solution of Eqs. (30). It gives the trivial T = 0 approxi- 
mation for ~r but nontrivial useful approximations can be obtained from it 
by using the above procedure to obtain solutions for n = 1, 2, 3 ..... 

I f J "  is large and negative, then the Hamiltonian is dominated by anti- 
ferromagnetic next-nearest-neighbor interactions. I f  it is also true that 
J > / J ' ,  then the ground-state n = 0 solution is 

F(a, b) = ~(a, b), a(a, b) = 3(a, - b ) ,  A(a) = 1 (46) 

This is also a trivial exact solution of (30), from which nontrivial solutions 
for higher n can be obtained by the above procedure. 

Isotropic Case 

If  J = J ' ,  then the Hamiltonian is unaltered by interchanging the rows 
with the columns. Provided this symmetry is not spontaneously broken (this 
can happen, for instance, i f J "  is large and negative), the solution of (30) has 
the symmetry properties 

6(a, b) = F(a, b), B(a) = A(a), s r = ~, ~' = ~7 (47) 

The four matrix equations therefore reduce to two. The iteration pro- 
cedure also simplifies, since Ur(a) = U(a) and G2(a) = F2(a), so (42) becomes 
the single eigenvalue equation 

U(a)r2(a) = xFz(a)A(a) (48) 

4. LOW-LEVEL A P P R O X I M A T I O N S  FOR THE ISING MODEL 

Bethe and Kramers-Wannier  Approximat ions 

As an example, consider the n = 0 solution when J0 = J = J '  = / / 3  = 
J4 = 0 and J"  > 0, so the model has only ferromagnetic next-nearest- 
neighbor interactions. It therefore factors into two independent nearest- 
neighbor Ising models, one on each sublattice. 

Set 

z = e x p ( -  2J"/k~T),  v = e x p ( -  �89 (49) 

and define x, s by 

e -s = x = v(z + vx3)/(1 + zvx  a) (50) 
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Then the solution of (30) is 

F(a, b) = G(a, b) = (2 cosh 2s) -112 exp[�89 + b)] 

A ( + )  = 1, a ( - )  = x,  ~ = ~' = 1 (51) 

K = ~ = ~'  - -  (1 + zvx3)~/[v~z(1 + x~)] 

From (42), the magnetization is 

m = (1 - x~)/(1 + x ~) = tanh 2s (52) 

These results are precisely those of the Bethe approximation. (6~ (The tz 
and ~1 of pp. 251-4 of Ref. 6 are related to v and x by t~ = v 4, t~l = vx3.) 

It  is illuminating to consider the zero-field case H = 0, v = 1. Then 
(50) always has a solution x = 1, s = 0. There is a critical value Tc of T, 
given by 

J"/kBTc = �89 In 2. (53) 

For  T < To there are two other real solutions of (50), having equal and 
opposite values of  s. I f  H is regarded as infinitesimally small and positive, 
then the correct solution is the one for which s is positive. 

Thus s is zero for T > T~ and F(a, b), A(a) are unchanged by negating 
a and b. For T < To, s is positive and this spin-reversal symmetry of F and 
A is broken. 

Such spontaneous symmetry-breaking is typical of Eqs. (30). I f  the 
Hamiltonian has a symmetry, then (30) will have a solution with the corre- 
sponding symmetry. I f  this symmetry is spontaneously broken at low tem- 
peratures, then (30) will also have two or more asymmetric solutions, which 
will then be the correct ones to use. The critical temperature can be obtained 
by increasing T until the asymmetric solutions coincide with the symmetric 
one. For  finite n the critical exponents thereby obtained will usually have the 
classical values 3 = 3, /~ = �89 There must be a "crossover phenomenon"  
as n - +  0% since the exponents must then take the true two-dimensional 
values. 

Another interesting example is the case Jo = J" = /-/3 = J~ = 0. The 
model then becomes the usual nearest-neighbor Ising model and it turns out 
that the n = 0 solution of (30) is precisely the Kramers-Wannier  approxi- 
mation.( 7~ 

5. G R A P H I C A L  I N T E R P R E T A T I O N  OF THE M A T R I C E S  

For  a given value of n, the 2" by 2 ~ matrices A(a), B(a), F(a, b), and 
G(a, b) are the solutions of Eqs. (30) and the symmetry relations (12), (28), 
and (29). This defines them to within normalization factors and the orthog- 
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onal transformations (34). The purpose of this section is to justify the trial 
function (11) and thereby give a graphical interpretation to A, B, F, and G. 

Convergence of the Variat ional  Approximat ions to the 
Exact Result 

Suppose the lattice still has m' rows and m columns, but is wound on a 
vertical cylinder. To each square face assign a weight w(a~, aj, a~, az) as in 
Section 1. In addition, to each horizontal edge, between spins ~ and a s, on 
the top row assign a weight f(gi ,  gj) such that 

f (a~ ,  aj) = f(cry, a,) (54) 

Choose these top boundary weights to match the expected state of the 
system. For  instance, at high temperatures a simple sensible choice would be 
f (a , ,  aj) = 1. For  a low-temperature ferromagnet in nonnegative fields one 
could take f(a~, aj) = ~(a~, aj) = ~(at, +)3(as ,  + ) ;  and for a low-tem- 
perature, nearest-neighbor antiferromagnet f ( ~ ,  aj) = 8(a~, - a j ) .  

The probability that the m spins on the bottom row have values ch ,..., am, 
respectively, is then 

x(~l,..., "m) = Z -1 ~'I--[ w(a,, a,, ~ ,  ~,)]~.fO~, ~) (55) 

where the first product is over all the m ( m '  - 1) square faces of the lattice, 
the second is over all m horizontal edges in the top row, and the sum is over 
all spins on the lattice other than those in the bottom row. 

The summation in (55) can be arranged either by rows or columns. 
Grouping the spins by rows, (55) can be written as 

X(al,..., am) = Z -  I(V m'- lX0)~ ~ ..... ~, (56) 

where V is the 2 m by 2 r~ transfer matrix (7) and Xo is a 2m-dimensional vector, 
with entries 

X0(al,..., am) = f ( a l ,  a~)f(a2, ~3)"'" f(am, crl) (57) 

On the other hand, set n = m' - 1 and let a, 2tl ..... A~ be the spins on 
one column of the lattice, and b, tzz .... ,/~, the spins on the next column, 
arranged as in Fig. 2a. Let ~ = {h~ .... , ~,}, t~ = {tL1,..., t~,}. Then the Boltz- 
mann weight of the interactions between these columns is 

r~--J. 

F~(a, b) = w(a, b, ~ ,  tOfO, ,  m) 1~  wOj, m, Aj+I, re+l) (58) 
j ' = l  

Normalize this definition by dividing it by Z TM. Then (55) can be written 

x(o~,..., ~)  = ~ F~,(~,, ~)F~(~, ~)... F~(~, ~1) (59) 
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h2~--~ ~2 h 1.1 

I I 

(o) (b) 

Fig. 2. (a) The half-column lattice segment with 
the weight FAr(a, b) given in (58); (b) the same 
segment with the row order reversed, internal 
edges omitted, and only the sites with spins a and 
b explicitly shown. These figures can also be used 
to represent any function of a, b, A, t~; notably 
F~(a, b). 

Regarding Pa,.(a, b) as the element (~, t~) of a 2" by 2" matrix F(a, b), (59) 
becomes 

X(o'z . . . . .  O'm) = Tr if(o-l, o-2)ff(a2, o-3) "'" i f (~ O'1) (60) 

From (54), (58), and (6), these matrices F(a, b) satisfy the symmetry 
relations 

FT(a, b) = F(b, a) (61) 

Now suppose that n = m' - 1 is large. From (56) it follows that in this 
limit 

X(~l ..... o-m) = ~(~  ,..., o-m) (62) 

where ~b is the eigenvector of V corresponding to the maximum eigenvalue ~b. 
Combining (60) and (62), it follows that the trial function (11) is then exactly 
correct, and that 

F(a, b) = if(a, b), n ~ ~ (63) 

This means that the sequence of variational approximations, obtained 
by taking n = 0, 1, 2,... in Section 3, must converge to give the exact value 
of  K in the limit n -+ ~ .  

For  finite n, (63) is no longer valid. [One could of course require that 
F = _Pin (11), but this would not be the optimal choice of the trial function.] 
Even so, (63) should be approximately true for finite n, particularly if the 
temperature is either high or low and a good choice o f f (a ,  b) is made. This 
approximate equality in (63) makes it possible to given an illuminating 
graphical interpretation of the matrices F(a, b), A(a), B(a), and G(a, b). 

Half -Column,  Ha l f -Row,  and Corner Transfer Matr ices 

Suppose that n is infinitely large, so F is F. Then F~,(a, b) is the Boltz- 
mann weight of the lattice strip shown in Fig. 2a. Using (5), it is also the 
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/ i  
A 

~'t G" 
T 

X B 

(o) (b) (c) (d) 
Fig. 3. The lattice segments corresponding to R(A, a, ~'[t~, b, td), Xaz,(a), S(A, a, a ' ,  A']#, 

b, b', t~'), and Yza,(a, a'), respectively. 

weight of the strip shown in Fig. 2b. These are semiinfinite column strips of 
the lattice, so the F(a, b) may meaningfully be called "half-column transfer 
matrices." 

For simplicity, the internal edges have been omitted in the lattice seg- 
ment in Fig. 2b, and the only sites explicitly shown are those of the spins 
a and b. These conventions are followed in subsequent figures. 

From (14), R(A, a, A']/x, b,/z') is the weight of the fully infinite vertical 
strip shown in Fig. 3a. Thus R is a column-to-column transfer matrix. 
Operating by R a large number r of times on a given initial vector builds up 
the lattice of 2n + 1 rows and r + 1 columns indicated in Fig. 3b. (For the 
moment, ignore the horizontal line labeled r.) Thus the elements Xaa,(a) of 
its maximal eigenvector are the probabilities of the 2n + 1 spins on the left 
edge of this lattice having values A, a, A'. 

Similarly, from (19), S is the column-to-column transfer matrix indicated 
in Fig. 3c; Yaa,(a, a') is the probability distribution for the spins on the left- 
hand edge of the lattice of 2n + 2 rows and r + 1 columns shown in Fig. 3d. 

The lattices in Figs. 3b and 3d can be partitioned as shown. Let A,a,(a) 
be the probability distribution for the spins % a, A', obtained by summing over 
all spins inside (or on the dotted boundaries) the upper half of the lattice in 
Fig. 3b. Similarly, let BA,(a) be the distribution for the lower half; and let 
G**,(a, a') be the Boltzmann weight of the interactions between the two 
adjacent rows shown in Fig. 3d. 

Summing over r [% ~-'] in Fig. 3b [3d] gives the equation (28b) [(28c)]; 
the row-reversal symmetry (5) gives (28a) and (29); setting r = n ensures that 
the matrices A(a), B(a) are square. Thus in the limit of n large the elements 
of the matrices A(a), B(a), G(a, a') in Section 3 can be taken to be the prob- 
ability distributions defined in the preceding paragraph. 

From Fig. 3d it is therefore apparent that the G(a, a') are "half-row 
transfer matrices" similar to the half-column matrices F(a, b). The matrices 
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A(a), B(a) correspond to quadrants of a completely infinite lattice. Apart from 
the shape of the outer boundary, which is irrelevant in the limit n --~ 0% the 
2" + 1 by 2" + 1 matrices 

are the "corner transfer matrices" previously defined for the eight-vertex 
model ~4,5~ 

Graphical Form of the Equations 

Even if n is finite, the RHS of Eqs. (14), (28b), and (28c) can still be 
represented graphically as in Fig. 3, so long as the elements of F, A, B, and 
G are merely interpreted as undetermined functions of the outer spins on the 
corresponding segments. 

One advantage of this graphical representation is that it makes the 
symmetries very clear. In particular, it can be seen that (23) is equivalent to 
requiring that the row-reversal symmetry be unbroken. It appears that this 
is always so, so (23) is valid. It is also immediately obvious that inter- 
changing F and G, and A with B, is equivalent to interchanging the rows 
with the columns; i.e., to rotating the lattice through 90 ~ . 

Equations (30) can be represented graphically. Adopting the convention 
of summing over spins on unlabeled solid circles and edges inside a figure, 
Eqs. (30a) and (30c) can be represented as in Fig. 4. The diagrams repre- 
senting Eqs. (30b) and (30d) can be obtained from these by rotating the 
figure anticlockwise through 90 ~ and interchanging F, A, ~:, , /with G, B, r 
~', respectively. 

The variational expression (31) is represented in Fig. 5. 

A Simple Approximation for x 

Since (31) is stationary with respect to variations in F, G, and A, reason- 
able approximations to F, G, A, and B therein should give good approxi- 
mations to ~. For given n an obvious choice is to take F, G, A, and B to be 

- -  GI G i 

Fig, 4. Graphical representation of Eqs. (30a) and (30c). 
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K ; 

!B t Ai 
i A  B i 
i ........................... i ! ................................... i 

...... B i ; i  : ....... ........... : ,  

Fig. 5. Graphical representation of the variational expression (31) for K. 

exactly the half-column, half-row, and corner transfer matrices of a 2n + 1 
by 2n + 1 square lattice. Setting N = 2n + l, (31) then gives 

K = ZU,_~Z~+I,N+I/ZN,N+IZN+I.U (65) 

where Zm,, is the partition function of a lattice of m rows and n columns. 
This is an approximate formula for K. It is not the best result that can 

be obtained using 2 ~ by 2" matrices, but it is quite good and has been dis- 
cussed previously. (8) It is of course exactly true when n is infinitely large. 

In calculating (65) one should introduce appropriate weights f ( ~ ,  ~j) 
for the top and bottom boundary edges, g(~,  ~j) for the left- and right-hand 
boundary edges, and a(a~) for the four corner sites of the lattice. The best 
way to do this would be to choose them to maximize (65). Such a calculation 
would presumably be related to the work of Bolton and Gruen(9) on finite 
lattices with mean-field boundary conditions. 

6. S U M M A R Y  

Equations (30), together with the symmetry relations (12), (28a), and 
(29), define the 2" by 2 ~ matrices F(a, b), G(a, b), A(a), and B(a) for a, b -- 
+ ,  - ,  to within normalization factors and the transformations (34). They 
also define the partition function per site ~ = ~/f. They simplify for a system 
in an isotropic state. 

For  large n the 2 "+1 by 2 "+1 matrices (64) are the corner transfer 
matrices of the system. For  finite n, (64) can be taken to be the definition 
of the CTMs. In some ways this definition is more attractive than the 
previous one, (~ since no particular boundary conditions need be assumed. 
The equations, as it were, determine their own boundary conditions. 

I did hope this would mean that for finite n the new CTMs of the zero- 
field eight-vertex model would turn out to have special properties similar 
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to those possessed by the Ising model ones. These might have pointed the 
way to an operator algebra solution of the eight-vertex model and a proof  
of the conjectured expressions for the order parameters. C1~ Unfortunately 
I have so far made little progress in this direction, but have not completely 
abandoned hope. 

As n increases, the approximations should rapidly converge to give the 
exact values for the thermodynamic functions. Tsang is investigating this 
convergence for the zero-field Ising case. Ca~ 

Possible Genera l i za t ions  

For  definiteness I have supposed in deriving (30) that the spins take 
only the values + 1 and - 1, but this is not necessary. They can take any set 
of  values so long as the symmetry relations (5) and (6) are satisfied. I f  they 
take q values, then it is natural to require the F(a, b), G(a, b), A(a), and B(a) 
to be q~ by q" matrices. 

Possibly even the symmetry requirements (5) and (6) can be weakened: 
certainly they do not seem to be essential in the graphical interpretations 
given in Figs. 4 and 5. However, the argument of  Section 3 is much simpler 
and more satisfactory when V, R, and S are real, symmetric matrices. 
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